Graphs, partitions and Fibonacci numbers
نویسندگان
چکیده
The Fibonacci number of a graph is the number of independent vertex subsets. In this paper, we investigate trees with large Fibonacci number. In particular, we show that all trees with n edges and Fibonacci number > 2n−1 + 5 have diameter ≤ 4 and determine the order of these trees with respect to their Fibonacci numbers. Furthermore, it is shown that the average Fibonacci number of a star-like tree (i.e. diameter ≤ 4) is asymptotically A·2n ·exp(B√n)·n3/4 for constants A,B as n → ∞. This is proved by using a natural correspondence between partitions of integers and star-like trees.
منابع مشابه
Energy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملSet partition statistics and q-Fibonacci numbers
We consider the set partition statistics ls and rb introduced by Wachs and White and investigate their distribution over set partitions avoiding certain patterns. In particular, we consider those set partitions avoiding the pattern 13/2, Πn(13/2), and those avoiding both 13/2 and 123, Πn(13/2, 123). We show that the distribution over Πn(13/2) enumerates certain integer partitions, and the distr...
متن کاملStatistical Distributions and q-Analogues of k-Fibonacci Numbers
We study q-analogues of k-Fibonacci numbers that arise from weighted tilings of an n × 1 board with tiles of length at most k. The weights on our tilings arise naturally out of distributions of permutations statistics and set partitions statistics. We use these q-analogues to produce q-analogues of identities involving k-Fibonacci numbers. This is a natural extension of results of the first aut...
متن کاملPermutation Statistics and q-Fibonacci Numbers
In a recent paper, Goyt and Sagan studied distributions of certain set partition statistics over pattern restricted sets of set partitions that were counted by the Fibonacci numbers. Their study produced a class of q-Fibonacci numbers, which they related to q-Fibonacci numbers studied by Carlitz and Cigler. In this paper we will study the distributions of some Mahonian statistics over pattern r...
متن کاملOn the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices
In this paper we consider certain generalizations of the well-known Fibonacci and Lucas numbers, the generalized Fibonacci and Lucas p-numbers. We give relationships between the generalized Fibonacci p-numbers, Fp(n), and their sums, Pn i1⁄41F pðiÞ, and the 1-factors of a class of bipartite graphs. Further we determine certain matrices whose permanents generate the Lucas p-numbers and their sum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 155 شماره
صفحات -
تاریخ انتشار 2007